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Abstract Geospatial technology is increasing in

demand for many applications in geosciences. Spatial

variability of the bed/hard rock is vital for many

applications in geotechnical and earthquake engi-

neering problems such as design of deep foundations,

site amplification, ground response studies, liquefac-

tion, microzonation etc. In this paper, reduced level

of rock at Bangalore, India is arrived from the 652

boreholes data in the area covering 220 km2. In the

context of prediction of reduced level of rock in the

subsurface of Bangalore and to study the spatial

variability of the rock depth, Geostatistical model

based on Ordinary Kriging technique, Artificial

Neural Network (ANN) and Support Vector Machine

(SVM) models have been developed. In Ordinary

Kriging, the knowledge of the semi-variogram of the

reduced level of rock from 652 points in Bangalore is

used to predict the reduced level of rock at any point

in the subsurface of the Bangalore, where field

measurements are not available. A new type of cross-

validation analysis developed proves the robustness

of the Ordinary Kriging model. ANN model based on

multi layer perceptrons (MLPs) that are trained with

Levenberg–Marquardt backpropagation algorithm

has been adopted to train the model with 90% of

the data available. The SVM is a novel type of

learning machine based on statistical learning theory,

uses regression technique by introducing loss func-

tion has been used to predict the reduced level of rock

from a large set of data. In this study, a comparative

study of three numerical models to predict reduced

level of rock has been presented and discussed.

Keywords Rock depth � Geostatistical �
Ordinary Kriging � Artificial Neural Network �
Support Vector Machine

Notations

a Range of the variogram

b The scalar threshold

C Capacity factor (for learning machine)

C (0) r Sill of the variogram

C0 Nugget of the variogram

l The number of training sets

Rn n-Dimensional real vector space

w The boundary

wi Weight assigned to each scater point

x The input vector

y A binary value representing the two classes

dk Actual error

e Error insensitive zone

ek Normalized error
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q(w,b) Margin

c (h) Semi-variogram

r The width of radial basis function

C Gamma function

1 Introduction

Spatial variability of the bed/hard rock with reference

to ground surface is vital for many applications in

geosciences. Rock depth in a site is very useful

parameter to the geotechnical earthquake engineers to

find their basic requirement of hard strata and ground

motion at rock level. In most of the geotechnical

investigations, knowledge of the hard strata or rock is

essential to decide the type of foundations and design

a suitable foundation for a structure. In the ground

response analysis, Peak Ground Acceleration (PGA)

and response spectrum for the particular site is

evaluated at the rock depth levels and further on at

the ground level considering local site effects. This is

an essential step to evaluate site amplification and

liquefaction hazards of a site and further to estimate

induced forces on the structures. In ground response

analysis, the response of the soil deposit is deter-

mined from the motion at the bed rock level. In all

these problems, it is essential to evaluate the depth of

the hard rock from the ground level. With an

objective of predicting the spatial variability of the

reduced level of the bed/hard rock in Bangalore, an

attempt has been made to develop models based on

Ordinary Kriging technique, Artificial Neural Net-

work (ANN) and Support Vector Machine (SVM). It

is also aimed at comparing the performance of these

developed models for the available data in Bangalore.

The kriging method was developed during the 1960s

and 1970s and has been acknowledged as a good spatial

interpolator (Matheron 1963; Isaaks and Srivastava

1989; Davis 2002). The most important features of this

method are (1) the unbiased estimate of results, (2) the

minimum estimation error, and (3) uncertainty evalu-

ation of interpolation data points. This technique is

widely used in the field of earth sciences, including

mining, geochemistry, remote sensing, etc. The main

goal of kriging is to predict the unknown properties

from the knowledge of semi-variogram. Semi-vario-

gram is the analytical tool used to evaluate and quantify

the degree of spatial autocorrelation. The semi-vario-

gram is an appreciation of the dispersion of the

parameters, which equates to the variance and also

gives an autocorrelation distance that represents the

radius of influence of a measurement made at a given

point. Further, it provides the type of variability that

indicates how values fluctuate in space. A new method

for cross-validation analysis of developed models has

been also proposed and validated. The cross-validation

of the model has been done based on the examination of

residuals.

ANN model is one of the data processing models

made up of highly interconnected nodes (neurons)

that map a complex input pattern with a complex

output pattern (Kohonen 1988; Khanna 1989; Alek-

sandar and Morton 1990; Hertz et al. 1991; Dowla

and Rogers 1995; Hagan et al. 1996). One of the

promising characteristics of the ANN is its ability to

learn and generalize from experience and example

and to adapt for changing situations. ANN was

originated from the work of McCulloch and Pitts

(1943), who demonstrated the ability of intercon-

nected neurons to calculate some logical functions.

Hebb (1949) pointed out the importance of the

synaptic connections in the learning process. Later,

Rosenblatt (1958) presented the first operational

model of a neural network: the ‘Perceptron’. The

perceptron, built as an analogy to the visual system,

was able to learn some logical functions by modify-

ing the synaptic connections. In this paper, ANN with

multi-layer perceptrons (MLPs) that are trained with

Levenberg–Marquardt backpropagation algorithm

(Hagan and Menhaj 1994) has been developed for

predicting reduced level of rock.

The Support Vector Machine (SVM) based on

statistical learning theory has been developed by

Vapnik (1995). Originally SVM was developed for

pattern recognition problem. Recently it has been

used to solve non-linear regression estimation and

time series prediction by introducing e-insensitive

loss function (Mukherjee et al. 1997; Muller et al.

1997; Vapnik 1995; Vapnik et al. 1997). The SVM

implements the structural risk minimization principle

(SRMP), which has been shown to be superior to the

more traditional Empirical Risk Minimization Prin-

ciple (ERMP) employed by many of the other

modelling techniques (Osuna et al. 1997; Gunn

1998). SVM is trained through optimisation of a

convex, quadratic cost function, which ensures the

uniqueness of the SVM solution. The SVM model

depends explicitly on the most ‘‘informative’’ data
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(the support vectors). In this study, SVM has been

used to study the spatial variability of reduced level

of rock by introducing e-insensitive loss function.

2 Subsurface of Bangalore and GIS Model

Development

Bangalore covers an area of over 220 km2 and Ground

Reduced Levels (GRL) also vary a lot in the city. It

varies from 810 m in north-east part to 940 m in

south-western part of Bangalore. GRL does not vary

much in the central and northwestern parts of the city.

There were over 150 lakes, though most of them are

dried up due to erosion and encroachments leaving

only 64 at present in an area of 220 km2. The

population of greater Bangalore region is over 6 mil-

lion and it is the fifth biggest city in India. It is situated

on latitude of 12�80 N and longitude of 77�370 E.

From geology, subsurface of Bangalore region covers

in Gneiss complexes, which is formed due to several

tectonic-thermal events with large influx of sialic

material, are believed to have occurred between 3000

and 3400 million years ago giving rise to an extensive

group of gray gneisses designated as the ‘‘older gneiss

complex’’. These gneisses act as the basement for a

widespread belt of schist’s. The younger group of

gneissic rocks mostly of granodiomitic and granitia

composition is found in the eastern part of the state,

representing remobilized parts of an older crust with

abundant additions of newer granite material, for

which the name ‘‘younger gneiss complex’’ has been

given (Radhakrishna and Vaidyanadhan 1997). The

soil is mostly a residual soil from granite gneiss due to

weathering action. In the old tank beds, silty sand/clay

is also found as overburden.

A Geographic Information System (GIS) model

(see Fig. 1) of Bangalore with several layers on a

scale of 1:20000 has been developed with a purpose

of carrying out microzonation of Bangalore. The

Bangalore map forms the base layer for GIS. The

map entities have been developed for locating the

boreholes to the utmost accuracy and at each location

borelogs have been attached along with geotechnical

data of each layer upto the hard rock. The digitized

map has several layers of information. Some of the

important layers considered are the boundaries (outer

and Administrative), Highways, Major roads, Minor

roads, Streets, Rail roads, Water bodies, Drains,

Ground Contours and Borehole locations. The loca-

tions of boreholes are shown in Fig. 1 along with

ground reduced level with an interval of 10 m (see

Fig. 2). Distribution of collected boreholes in Ban-

galore is shown in Fig. 3, indicating a very good

distribution of the boreholes in each quadrant of

Bangalore from the city center. Figure 1 also depicts

grids of 1 km 9 1 km along with the corporate

boundary of Bangalore and outer boundary circum-

scribing the ring road. Figure 1 gives a clear view of

the spatial distribution of boreholes in Bangalore

region. An average of about three boreholes data is

available within the grid of 1 km 9 1 km.

Vidhana Souda 
Lat-Long: 
77°35.46΄: 12°58.67΄

Outer
Boundary

Corporate
Boundary

Borehole
locations

Fig. 1 Borehole location in

Bangalore Map (scale:

1:20000)
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Geotechnical data for 652 boreholes was collated

from archives of only two organizations; Torsteel

Research Foundation in India and Indian Institute of

Science. This data was generated for geotechnical

investigations carried out for several major projects in

Bangalore including Bangalore metro project. The data

collected is of very high quality and collected during

the years 1995–2003. The data in the model is on

average to a depth of 30 m below the ground level.

Each borelog contains information about depth, den-

sity of the soil, total stress, effective stress, fines

content and N values, depth of ground water table and

rock depth. In GIS model, the boreholes are repre-

sented as three dimensional object spanning below the

map layer. These three dimensional boreholes are

generated with several layers with a bore location in

each layer overlapping one below the other and each

layer representing 0.5 m interval of the subsurface.

Each layer of this model is attached with borelog data at

that depth. The data consists of visual soil classifica-

tion, borehole location, ground water level, date and

time during which test has been carried out, other

physical and engineering properties of soil and rock

depth. As such when this model is viewed in three

dimensional subsurface information on any borehole at

any depth can obtained by clicking at that level. The

hard rock has been identified by visual observation of

the cores taken at these locations. Rock depth from

ground level is the difference between the ground

reduced level at borehole location and reduced level of

the hard rock at the same borehole location. The

reduced level of the hard rock at borehole location is

the difference between the ground reduced level at

borehole location and depth of overburden thickness

up to hard rock for the same borehole. The depth of

overburden is estimated from the available borelogs.

3 Ordinary Kriging Model

In this paper, Ordinary Kriging has been adopted for

predicting reduced level of rock in the subsurface of

Fig. 2 GIS model of

borehole locations with

respect to contours
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Bangalore. For this method, there is a need to

introduce some terminologies such as covariance

function and semi-variogram. The covariance func-

tion between two points is defined as:

C hð Þ ¼ E d xð Þ �mð Þ d x0ð Þ �mð Þ½ � ð1Þ

where m is the mean of reduced level of rock, d(x)

and d(x0) are reduced level of rock values of at points

x and x0 respectively and C (h) is the covariance

function with a lag h, with h being the distance

between two points x and x0:

h ¼ x� x0k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x0Þ2 þ ðy� y0Þ2
q

ð2Þ

and E is the expectation.

The experimental semi-variogram (Matheron

1972; Guillaume 1977) is defined as:

c hð Þ ¼ 0:5 � E d xð Þ � d x0ð Þð Þ2
h i

ð3Þ

Figure 4 represents the different components of

the semi-variogram. The relation between the

covariance function and the semi-variogram is as

follows:

cðhÞ ¼ C 0ð Þ � C hð Þ ð4Þ

where, c(h) is the semi-variogram and C(0) is sill.

For semi-variogram, the model used in this

analysis is spherical model. Once the model of

semi-variogram is constructed, the weights are com-

puted for kriging. The details of Ordinary Kriging are

given by many researchers (Journel and Huijbregts

1978; Rendu 1978; Clark 1979; Burgess and Webster

1980a, b; Rubeis et al. 2005) and thus it is not

discussed here.

A new type of cross-validation analysis for

kriging has been presented in this study. In practice,

cross-validation is based on statistical tests involv-

ing the residuals. The detailed description of

residuals in the case of kriging is given by Kitanidis

(1991). It has been assumed that the n measure-

ments are available at a time, in a given sequence.

The kriging estimate of z at the second point x2

from the first measurement x1 is calculated. So, one

can write Ẑ2 ¼ zðx1Þ and r2
2 ¼ 2c x1 � x2ð Þ: where,

Ẑ2 is the kriged value at the point x2. The actual

error d2ð Þ ¼ z x2ð Þ � Ẑ2 is normalized by the stan-

dard error (r2) and this normalized value of the

error is given by:

e2 ¼
d2

r2

ð5Þ

For the k-th measurement location, the actual error

(dk) and normalized error (ek) can be written as,

respectively:

dk ¼ z xkð Þ � Ẑk; for k ¼ 2; . . .; n ð6Þ

ek ¼
dk

rk

; for k ¼ 2; . . .; n ð7Þ

A cross-validation Q1 and Q2 are used to check

the statistical distribution of the residuals between the

observed data and kriged values at the original

observation location by using the same kriging

parameters and semi-variogram model parameters.

To perform Q1 and Q2 cross validation, a normalized

residual array (ek) is constructed as suggested by

Kitanidis (1997). Q1 is the mean of the residual (ek)

and it is written as:

Q1 ¼ 1

n� 1

X

hboxn

k¼2

ek ð8Þ

Under the null hypothesis, Q1 is normally distrib-

uted with mean 0 and variance 1
n�1

. The probability

density function (pdf) of Q1 is:

f Q1ð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2p
n�1ð Þ

q exp � Q12

2
n�1ð Þ

 !

ð9Þ

where, n is the number of data. If the experimental

value of Q1 turns out to be acceptable close to zero

then this test gives no reason to question the validity

Range = a

Sill = C (O) 

Nugget =Co

γ
(h

)

C (h)

Lag distance (h) 

Fig. 4 A typical semi-variogram
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of the model. The Q2 is the variance of ek and it is

written as:

Q2 ¼ 1

n� 1

X

n

k¼2

e2
k ð10Þ

(Q2)*(n - 1) approximately follows the chi-

square distribution with parameter (n - 1). Where,

n is the number of data points. The mean and

variance of Q2 are 1 and 2
n�1

respectively. The pdf of

Q2 is given by the following equation:

f Q2ð Þ¼
n�1ð Þðn�1Þ=2

Q2ðn�3Þ=2exp � n�1ð ÞQ2

2

� �

2ðn�1Þ=2C n�1
2

� � ð11Þ

where, C is the gamma function. For robust model,

the experimental value of Q2 should be close to one.

In this work, Ordinary Kriging model and cross-

validation have been programmed using MATLAB

software (MathWork, Inc. 1999).

4 ANN Model

In this study, ANN has been used to approximate the

function of reduced level of rock ðdÞ ¼ d X;Yð Þ
where, d(X,Y) corresponds to a reduced level of rock

corresponding to X and Y, the coordinates of a point.

ANN uses multi-layer perceptrons (MLPs) that are

trained with Levenberg–Marquardt backpropagation

algorithm. A typical structure of MLPs consists of a

number of processing elements, which are usually

arranged in layers: an input layer, an output layer and

one or more hidden layers. The connections between

the neurons in the different layers are such that the

output from one neuron is one of the inputs to all

the neurons in the next layer and the inputs are the

outputs from all the neurons in the previous layer. In

backpropagation training process, the network error

is back propagated into each neuron in the hidden

layer, and then continued into the neuron in the input

layer. The modification of connection weights and

biases depend on the distribution of error at each

neuron. The global network is reduced by continuous

modifications of connection weights and biases. An

error goal is set before the network training, and if the

network during the training becomes less than the

error goal, the training have to be stopped. In a MLP

model, once the system is trained, network can

calculate outputs as a functional mapper using last

updated network parameters. This is also the reason

why MLPs are called as ‘‘universal functional app-

roximaters’’(Haykin 1999). Levenberg–Marquardt

Backpropagation algorithm is a variation of Newton’s

method and is well suited to ANN training. The

theory and implementation of Levenberg–Marquardt

Backpropagation has given by More (1977).

For predicting reduced level of rock in a given

space, the two input variables(X, Y) are used for the

neural network models in this study. Hence, the input

layer has two neurons. The only output is the reduced

level of rock or rock depth and therefore the output

layer has only one neuron. In ANN analysis,

normalization of the data is very important. There

are many ways of normalizing data, but the method

used in this analysis is normalizing the data against

their maximum values (Sincero 2003). In ANN

modeling, the data has been divided into two sub-

sets; a training dataset, to construct the model, and a

testing dataset to estimate the model performance.

So, the reduced level of rock data has been divided

into training and testing datasets using sorting

method, to maintain statistical consistency. In this

study, only 10% of the total data selected randomly

are considered as testing dataset, which consists of 65

reduced levels of rock values. The remaining 90%

reduced level of rock values are considered as

training dataset. The statistical consistency of training

and testing datasets improve the performance of the

backpropagation model and later helps in evaluating

them better (Shahin et al. 2000). In backpropagation

model, the optimum backpropagation networks that

can be obtained in the present study are a four-layer

feed forward network. Different types of architecture

have been tested to get optimum architecture [For

example, one hidden layer with 3,4,5,6,7 and 8

neurons and two hidden layers (1st hidden layer with

3,4,5,6,7,8,9 and 10 neurons and 2nd hidden layer

with 3,4,5,6,7,8,9,10,11,12,13,14 and 15 neurons)

with different neurons in hidden layers]. The opti-

mum architecture of the backpropagation model with

two hidden layers is shown in Fig. 5. In this study,

the transfer function used in first and second hidden

layers is tansig and logsig respectively. The logsig

transfer function has been used in the output layer.

The number of neurons in the hidden layer is

determined by training several networks with differ-

ent numbers of hidden neurons and comparing the

predicted results with the desired output. Using few
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hidden neurons could result in huge training errors

and errors during testing, due to underfitting and high

statistical bias. On the other hand, using too many

hidden neurons might give low training errors but

could still have high testing errors due to overfitting

and high variance. In this study, first hidden layer

with 8 neurons and the second hidden layer with 10

neurons have been used.

5 Support Vector Machine (SVM) Model

Support Vector Machine (SVM) is a method for

pattern classification and regression technique, which

has been used successfully to number of applications

(Drucker et al. 1999; Furey et al. 2000; Dibike et al.

2001; Guyon et al. 2002; Foody and Mathur 2004).

The function can be a classification function or a

general regression function. In SVM, the main goal is

to separate the two classes by a function which is

done by placing a boundary between the two different

classes and orient it in a way the margin is

maximized. For example in Fig. 6, there are many

possible linear classifiers that can separate the data

Reduced Level of 
Rock (d) 

X

Y
8

10

1

1

2

3

2

3

4

+1

-1

( )( ) 1
x*2exp1

2
Tansig −

−+
=

( )( )xexp1

1
Logsig

−+
=

Input
Layer

First
Hidden
Layer

Second
Hidden
Layer

Output
Layer

+1

-1

Fig. 5 ANN architecture

and transfer functions

Optimal Hyperplane 

Fig. 6 Optimal separating hyperplane
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but there is only one that can be maximized for the

margin (maximizes the distance between the nearest

data point of each class). This linear classifier is

called the optimal separating hyperplane. Maximum

margin has good generalization capability. The

nearest data points are used to define the margin

and are known as support vectors (see Fig. 7).

Consider the problem of separating the set of

training vectors (D) belonging to two separate classes

as:

D ¼ x1; y1
� �

; . . .; xn; ynð Þ
� �

;
x 2 Rn; y 2 f�1; 1g ð12Þ

where, y = a binary value representing the two

classes (class +1 and class -1), x = the input vector,

Rn = n-dimensional vector space.

The hyper plane (a boundary line) considered can

be expressed as:

hw � xi þ b ¼ 0; w 2 Rn; b 2 R ð13Þ
where, w = the boundary, x = the input vector,

b = the scalar threshold and R = one-dimensional

vector space. Equation 13 has some redundancy. To

remove redundancy, it is appropriate to consider a

canonical hyperplane (Vapnik 1995) satisfying the

following condition,

hw � xi þ b ¼ 1; ð14Þ
hw � xi þ b ¼ �1: ð15Þ

Figure 8 illustrates this idea, where the distance

from the nearest point to each hyper plane is shown.

A separating hyper plane in canonical form must

satisfy the following condition.

yibðw � xiÞ þ bc>1; i ¼ 1; . . .; n: ð16Þ

where, n = the number of training sets.

The distance d(w, b; x) of a point x from the

hyperplane (w, b) is,

d w; b; xð Þ ¼ w � xið Þ þ bj j
wk k ð17Þ

The margin (q(w,b)) i.e., the sum of the absolute

distance between the hyperplane and closest training

data points in each class +1 and -1, is given by:

q w; bð Þ ¼ min
class�1

d w; b; xi
� �

þ min
classþ1

d w; b; xj
� �

¼ 2

wk k
ð18Þ

The hyper plane has to be separated the set of

vectors without error and the distance between the

closest vectors in the plan is maximum. The maxi-

mization of this margin leads to the following

constrained optimization problem under the inequal-

ity constraints of Eq. 16:

min
1

2
wk k2

� 	

ð19Þ

In case where linear supporting hyper plane is

inappropriate, SVM applies ‘kernel trick’ to support

hyperplane (Boser et al. 1992). The kernel trick is a

method for easily converting a linear classification

learning algorithm into a non-linear one, by mapping

the original observations into a higher-dimensional

non-linear space so that linear classification in the

Support
Vectors

CLASS 1 

CLASS -1 

W

Margin

Fig. 7 Support vectors with maximum margin

Hyperplane 

Fig. 8 Canonical Hyperplane
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new space is equivalent to non-linear classification in

the original space. The transformation may be non-

linear. Some common kernels have been used such as

polymomial(homogeneous), polynomial(nonhomo-

geneous), radial basis function, gaussian function,

sigmoid function, etc, for non-linear cases. SVM can

also be applied to regression problems by the

introduction of an alternative loss function that is

modified to include a distance measure (Smola 1996).

The possible loss functions are quadratic, Laplace,

e-insensitive and Huber. In Support Vector Regres-

sion (SVR), the basic idea to map the original data,

into a feature space, with high dimensionality by a

non-linear mapping unknown function, and further to

carry on linear regression in this space.

In the present study, SVR has been used for

prediction of reduced level of rock values in the

subsurface of Bangalore. e-insensitive loss function

has been used in this analysis. In SVR modelling,

the data has been divided into two sub-sets; a

training dataset, to construct the model, and a

testing dataset to estimate the model performance.

So, for our study the 90% reduced level of rock data

(No of data = 652, 90% of total data = 587) are

considered for training dataset. The remaining 10%

of the total data is considered as testing dataset,

which consists of 65 reduced level of rock values.

The data is normalized against their maximum

values. The coordinates(X, Y) of each data were

prepared as input of the model, while reduced level

of rock value was the output from this model. When

applying SVM, in addition to the specific kernel

parameters, the optimum values of the capacity

factor C and the size of the error-insensitive zone e
should be determined during the modeling experi-

ment. In this study, radial basis function, polynomial

and spline function are used as the kernel function

of the SVM.

6 Code Availability

In this work, kriging model and cross-validation

scheme developed have been programmed using

MATLAB software (MathWork, Inc. 1999 and home-

page: www.mathworks.com). For ANN, the training

and testing of backpropagation model is carried out

using neural network tool box in MATLAB (Demuth

and Beale 1999). The SVM toolbox (Gunn 2003)

in MATLAB has been used. Codes developed and

carry out the analysis are available based on request.

These can be made available from this website:

http://www.isis.ecs.soton.ac.uk/resources/svminfo/.

7 Results and Discussion

In case of Ordinary Kriging, the semi-variogram of

reduced level of rock depth obtained from field

borelogs shown in Fig. 9. The spherical model has

been plotted in Fig. 9 and gives a reasonable fit to the

values obtained. The range, sill and nugget of the

semi-variogram are 0.95, 1.216 and 0.057 respec-

tively. One of the most important finding of this study

is that the semi-variogram is free from white noise or a

pure nugget effect. The pure nugget effect corre-

sponds to the total absence of auto-correlation. The

semi-variogram stops increasing beyond a certain

distance. This semi-variogram is called ‘‘transition’’

models, and corresponds to a random function which

is not only intrinsic but also second-order stationary.

In this study, semi-variogram has no nugget effect. If

the semi-variogram is continuous (no nugget effect), a

unique solution cannot be obtained because the

determinant of the matrix of coefficients of the

kriging system vanishes. There is only one possible

solution to this problem, adding a nugget term to the

semi-variogram. So, a nugget term has been intro-

duced in the analysis. As a result, spherical model

shows nugget effect. In case of cross-validation of

kriging model, the acceptable region is defined in the

Figs. 10 and 11 (between the two vertical lines). For a

good model, the Q1 as well as Q2 must fall in this

acceptable region as shown in Figs. 10 and 11. In case

of ordinary kriging, the value of Q1 and Q2 is 0.002,

1.069 respectively. The Q1 and Q2 values are well

Fig. 9 Semi-variogram model for Ordinary Kriging
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within the acceptable region (shown in Figs. 10, 11).

For Ordinary Kriging model, the value of Q1 and Q2

are close to 0 and 1 respectively. The cross-validation

indicates that the developed Ordinary Kriging model

is robust model for the estimation of the reduced level

of rock in the subsurface of Bangalore.

For backpropagation ANN model, the converged

results have been achieved at 650 epochs (an epoch is

one complete presentation of the entire set of training

patterns during the training process). The value of

mean square error (MSE) for the backpropagation

model has been computed and monitored during

training. Figure 12 shows how the MSE for back-

propagation model reduces as training proceeds.

Figure 13 shows the performance of the backpropa-

gation model for training dataset (Regression

Value(R) = 0.941). According to the results of

network training, the network has successfully cap-

tured the relationship between the input parameters

and output. In order to evaluate the capabilities of the

backpropagation model, the model is validated with

new reduced level of rock values that are not part of

the training dataset. Figure 14 shows the performance

of the backpropagation model for testing dataset

(R = 0.938). The result indicates that backpropaga-

tion model predicts reasonably well reduced level of

rock values in the subsurface of the Bangalore.

However, a major perceived disadvantage of ANN

models is that, unlike other statistical models, they

provide no information about the relative importance

of the various parameters. In ANN, as the knowledge

acquired during training is stored in an implicit

manner, it is very difficult to come up with reasonable

Fig. 10 Distribution of Q1 for Ordinary Kriging

Fig. 11 Distribution of Q2 for Ordinary Kriging

Fig. 12 MSE versus Epochs for Backpropagation model

Fig. 13 Performance of Backpropagation model for training

dataset
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interpretation of the overall structure of the network.

This lead to the term ‘‘black box’’ which many

researchers use while referring to ANN’s behavior.

In SVM method, the SVR was found to generalize

well by setting the capacity factor C as 100 and e
value as 0.001. At the moment, identification of the

optimal values for these parameters is largely a trial-

and-error process, which does, however, become

much easier with practice. Figures 15, 16 and 17

show the performance of the SVM model for training

dataset for radial basis function, polynomial and

spline kernel respectively. In order to evaluate the

capabilities of the SVR model, the model is validated

with new reduced level of rock values that are not

part of the training dataset. Figures 18, 19 and 20

show the performance of the SVR model for testing

Fig. 14 Performance of Backpropagation model for testing

dataset

Fig. 15 Performance of SVM model for training dataset using

radial basis function kernel

Fig. 16 Performance of SVM model for testing dataset using

radial basis function kernel

Fig. 17 Performance of SVM model for training dataset using

polynomial kernel
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dataset for radial basis function, polynomial and

spline kernel respectively. The width (r) of radial

basis kernel is 1 and the degree of polynomial kernel

is 4. Table 1 shows the R of SVM for each kernel

type with the corresponding numbers of support

vectors. From the Table 1, it is clear that spline

kernel gives better result than other kernels. The other

observation is that an increase the performance of

SVM on the training and testing dataset usually

corresponds to a decrease in the number of corre-

sponding support vectors.

In order to compare between the Ordinary

Kriging, ANN and SVM models, five points have

been chosen randomly from known reduced level

of rock values of 652 points in the subsurface

model of Bangalore. The predicted values of these

points are shown in Table 2. It can be seen from

the table that the ANN model has given best

prediction. SVM model gives better prediction than

Ordinary Kriging model. Figures 21, 22 and 23 are

the surface of reduced level of rock values in the

subsurface of Bangalore by Ordinary Kriging, ANN

and SVM respectively. Figures clearly indicate that

the results obtained from different methods are

comparable.

Fig. 18 Performance of SVM model for testing dataset using

polynomial kernel

Fig. 19 Performance of SVM model for training dataset using

spline kernel

Fig. 20 Performance of SVM model for testing dataset using

spline kernel

Table 1 General performance of SVM with different kernel

functions

Kernel

function

Training

performance

(R)

Testing

performance

(R)

No. of

support

vectors

Radial basis

function

0.767 0.714 527

Polynomial 0.77 0.744 518

Spline 0.835 0.831 503
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8 Conclusion

This study has demonstrated the usefulness of Ordinary

Kriging, ANN and SVM as tools to predict reduced

level of rock or rock depth values of Bangalore

considering a large data distributed over 220 km2 area.

Geostatistics has permitted the development of a semi-

variogram model for predicting reduced level of rock

in Bangalore. The power of geostatistics has become

even more apparent through the estimated reduced

level of rock in a way that is consistent with what is

obtained from actual reduced level of rock values. By

the use of the semi-variogram, it is possible to make

estimation of the reduced level of rock at any point of

the site where reduced level of rock depth was not

known. A new type of cross-validation analysis

(Q1 = 0.002 and Q2 = 1.069) which proves the

robustness of the developed Ordinary Kriging model

has been also presented in this study. For ANN model,

the procedures to determine data division, data

normalizing technique, network architecture selection,

transfer function and no of epochs are outlined. SVM

training consists of solving a—uniquely solvable—

quadratic optimization problem and always finds a

global minimum. In this study, C and e factors are

considered in SVM method by using different kernel

functions. The SVM was found to generalize well by

setting the capacity factor C as 100 and e value as

0.001. For SVM, spline kernel gave best result.

Comparison between the ANN, Ordinary Kriging and

SVM models developed with the available data

Table 2 Comparison between ANN, SVM and Ordinary Kriging model

Bore hole no. Longitude

(�)

Latitude

(�)

Actual

reduced

level of rock

(m)

Predicted

reduced

level of rock

(m) by ANN

Predicted

reduced

level of rock (m)

by SVM (spline

kernel)

Predicted

reduced

level of rock (m)

by Ordinary

Kriging

71–2 77.5765 12.9448 907.64 908.85 909.13 900.03

53–6 77.6237 12.9447 901 899.74 898.62 910.45

725–39B 77.6641 12.9924 905.86 904.85 901.50 898.65

51–9 77.5874 12.9331 927 926.80 925.87 932.48

87–4 77.5368 13.0293 889 889.13 890.16 882.54

77.5 77.6 77.7

13.07

12.98

12.9

L
on

gi
tu

de
 (d

eg
re

e)

Latitude (degree)  

Fig. 21 Surface of reduced level of rock depth using Ordinary

Kriging
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Fig. 22 Surface of reduced level of rock depth using ANN
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Fig. 23 Surface of reduced level of rock depth using SVM

Geotech Geol Eng (2008) 26:503–517 515

123



indicates that ANN model is superior to Ordinary

Kriging and SVM models developed with the available

data for predicting reduced level of rock values in the

subsurface of Bangalore.
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